Partner im RedaktionsNetzwerk Deutschland

Modellansatz

Gudrun Thäter, Sebastian Ritterbusch
Modellansatz
Neueste Episode

Verfügbare Folgen

5 von 251
  • Bayesian Learning
    In this episode Gudrun speaks with Nadja Klein and Moussa Kassem Sbeyti who work at the Scientific Computing Center (SCC) at KIT in Karlsruhe. Since August 2024, Nadja has been professor at KIT leading the research group Methods for Big Data (MBD) there. She is an Emmy Noether Research Group Leader, and a member of AcademiaNet, and Die Junge Akademie, among others. In 2025, Nadja was awarded the Committee of Presidents of Statistical Societies (COPSS) Emerging Leader Award (ELA). The COPSS ELA recognizes early career statistical scientists who show evidence of and potential for leadership and who will help shape and strengthen the field. She finished her doctoral studies in Mathematics at the Universität Göttingen before conducting a postdoc at the University of Melbourne as a Feodor-Lynen fellow by the Alexander von Humboldt Foundation. Afterwards she was a Professor for Statistics and Data Science at the Humboldt-Universität zu Berlin before joining KIT. Moussa joined Nadja's lab as an associated member in 2023 and later as a postdoctoral researcher in 2024. He pursued a PhD at the TU Berlin while working as an AI Research Scientist at the Continental AI Lab in Berlin. His research primarily focuses on deep learning, developing uncertainty-based automated labeling methods for 2D object detection in autonomous driving. Prior to this, Moussa earned his M.Sc. in Mechatronics Engineering from the TU Darmstadt in 2021. The research of Nadja and Moussa is at the intersection of statistics and machine learning. In Nadja's MBD Lab the research spans theoretical analysis, method development and real-world applications. One of their key focuses is Bayesian methods, which allow to incorporate prior knowledge, quantify uncertainties, and bring insights to the “black boxes” of machine learning. By fusing the precision and reliability of Bayesian statistics with the adaptability of machine and deep learning, these methods aim to leverage the best of both worlds. The KIT offers a strong research environment, making it an ideal place to continue their work. They bring new expertise that can be leveraged in various applications and on the other hand Helmholtz offers a great platform in that respect to explore new application areas. For example Moussa decided to join the group at KIT as part of the Helmholtz Pilot Program Core-Informatics at KIT (KiKIT), which is an initiative focused on advancing fundamental research in informatics within the Helmholtz Association. Vision models typically depend on large volumes of labeled data, but collecting and labeling this data is both expensive and prone to errors. During his PhD, his research centered on data-efficient learning using uncertainty-based automated labeling techniques. That means estimating and using the uncertainty of models to select the helpful data samples to train the models to label the rest themselves. Now, within KiKIT, his work has evolved to include knowledge-based approaches in multi-task models, eg. detection and depth estimation — with the broader goal of enabling the development and deployment of reliable, accurate vision systems in real-world applications. Statistics and data science are fascinating fields, offering a wide variety of methods and applications that constantly lead to new insights. Within this domain, Bayesian methods are especially compelling, as they enable the quantification of uncertainty and the incorporation of prior knowledge. These capabilities contribute to making machine learning models more data-efficient, interpretable, and robust, which are essential qualities in safety-critical domains such as autonomous driving and personalized medicine. Nadja is also enthusiastic about the interdisciplinarity of the subject — repeatedly changing the focus from mathematics to economics to statistics to computer science. The combination of theoretical fundamentals and practical applications makes statistics an agile and important field of research in data science. From a deep learning perspective, the focus is on making models both more efficient and more reliable when dealing with large-scale data and complex dependencies. One way to do this is by reducing the need for extensive labeled data. They also work on developing self-aware models that can recognize when they're unsure and even reject their own predictions when necessary. Additionally, they explore model pruning techniques to improve computational efficiency, and specialize in Bayesian deep learning, allowing machine learning models to better handle uncertainty and complex dependencies. Beyond the methods themselves, they also contribute by publishing datasets that help push the development of next-generation, state-of-the-art models. The learning methods are applied across different domains such as object detection, depth estimation, semantic segmentation, and trajectory prediction — especially in the context of autonomous driving and agricultural applications. As deep learning technologies continue to evolve, they’re also expanding into new application areas such as medical imaging. Unlike traditional deep learning, Bayesian deep learning provides uncertainty estimates alongside predictions, allowing for more principled decision-making and reducing catastrophic failures in safety-critical application. It has had a growing impact in several real-world domains where uncertainty really matters. Bayesian learning incorporates prior knowledge and updates beliefs as new data comes in, rather than relying purely on data-driven optimization. In healthcare, for example, Bayesian models help quantify uncertainty in medical diagnoses, which supports more risk-aware treatment decisions and can ultimately lead to better patient outcomes. In autonomous vehicles, Bayesian models play a key role in improving safety. By recognizing when the system is uncertain, they help capture edge cases more effectively, reduce false positives and negatives in object detection, and navigate complex, dynamic environments — like bad weather or unexpected road conditions — more reliably. In finance, Bayesian deep learning enhances both risk assessment and fraud detection by allowing the system to assess how confident it is in its predictions. That added layer of information supports more informed decision-making and helps reduce costly errors. Across all these areas, the key advantage is the ability to move beyond just accuracy and incorporate trust and reliability into AI systems. Bayesian methods are traditionally more expensive, but modern approximations (e.g., variational inference or last layer inference) make them feasible. Computational costs depend on the problem — sometimes Bayesian models require fewer data points to achieve better performance. The trade-off is between interpretability and computational efficiency, but hardware improvements are helping bridge this gap. Their research on uncertainty-based automated labeling is designed to make models not just safer and more reliable, but also more efficient. By reducing the need for extensive manual labeling, one improves the overall quality of the dataset while cutting down on human effort and potential labeling errors. Importantly, by selecting informative samples, the model learns from better data — which means it can reach higher performance with fewer training examples. This leads to faster training and better generalization without sacrificing accuracy. They also focus on developing lightweight uncertainty estimation techniques that are computationally efficient, so these benefits don’t come with heavy resource demands. In short, this approach helps build models that are more robust, more adaptive to new data, and significantly more efficient to train and deploy — which is critical for real-world systems where both accuracy and speed matter. Statisticians and deep learning researchers often use distinct methodologies, vocabulary and frameworks, making communication and collaboration challenging. Unfortunately, there is a lack of Interdisciplinary education: Traditional academic programs rarely integrate both fields. It is necessary to foster joint programs, workshops, and cross-disciplinary training can help bridge this gap. From Moussa's experience coming through an industrial PhD, he has seen how many industry settings tend to prioritize short-term gains — favoring quick wins in deep learning over deeper, more fundamental improvements. To overcome this, we need to build long-term research partnerships between academia and industry — ones that allow for foundational work to evolve alongside practical applications. That kind of collaboration can drive more sustainable, impactful innovation in the long run, something we do at methods for big data. Looking ahead, one of the major directions for deep learning in the next five to ten years is the shift toward trustworthy AI. We’re already seeing growing attention on making models more explainable, fair, and robust — especially as AI systems are being deployed in critical areas like healthcare, mobility, and finance. The group also expect to see more hybrid models — combining deep learning with Bayesian methods, physics-based models, or symbolic reasoning. These approaches can help bridge the gap between raw performance and interpretability, and often lead to more data-efficient solutions. Another big trend is the rise of uncertainty-aware AI. As AI moves into more high-risk, real-world applications, it becomes essential that systems understand and communicate their own confidence. This is where uncertainty modeling will play a key role — helping to make AI not just more powerful, but also more safe and reliable. The lecture "Advanced Bayesian Data Analysis" covers fundamental concepts in Bayesian statistics, including parametric and non-parametric regression, computational techniques such as MCMC and variational inference, and Bayesian priors for handling high-dimensional data. Additionally, the lecturers offer a Research Seminar on Selected Topics in Statistical Learning and Data Science. The workgroup offers a variety of Master's thesis topics at the intersection of statistics and deep learning, focusing on Bayesian modeling, uncertainty quantification, and high-dimensional methods. Current topics include predictive information criteria for Bayesian models and uncertainty quantification in deep learning. Topics span theoretical, methodological, computational and applied projects. Students interested in rigorous theoretical and applied research are encouraged to explore our available projects and contact us for further details. The general advice of Nadja and Moussa for everybody interested to enter the field is: "Develop a strong foundation in statistical and mathematical principles, rather than focusing solely on the latest trends. Gain expertise in both theory and practical applications, as real-world impact requires a balance of both. Be open to interdisciplinary collaboration. Some of the most exciting and meaningful innovations happen at the intersection of fields — whether that’s statistics and deep learning, or AI and domain-specific areas like medicine or mobility. So don’t be afraid to step outside your comfort zone, ask questions across disciplines, and look for ways to connect different perspectives. That’s often where real breakthroughs happen. With every new challenge comes an opportunity to innovate, and that’s what keeps this work exciting. We’re always pushing for more robust, efficient, and trustworthy AI. And we’re also growing — so if you’re a motivated researcher interested in this space, we’d love to hear from you." Literature and further information Webpage of the group G. Nuti, Lluis A.J. Rugama, A.-I. Cross: Efficient Bayesian Decision Tree Algorithm, arxiv Jan 2019 Wikipedia: Expected value of sample information C. Howson & P. Urbach: Scientific Reasoning: The Bayesian Approach (3rd ed.). Open Court Publishing Company. ISBN 978-0-8126-9578-6, 2005. A.Gelman e.a.: Bayesian Data Analysis Third Edition. Chapman and Hall/CRC. ISBN 978-1-4398-4095-5, 2013. Yu, Angela: Introduction to Bayesian Decision Theory cogsci.ucsd.edu, 2013. Devin Soni: Introduction to Bayesian Networks, 2015. G. Nuti, L. Rugama, A.-I. Cross: Efficient Bayesian Decision Tree Algorithm, arXiv:1901.03214 stat.ML, 2019. M. Carlan, T. Kneib and N. Klein: Bayesian conditional transformation models, Journal of the American Statistical Association, 119(546):1360-1373, 2024. N. Klein: Distributional regression for data analysis , Annual Review of Statistics and Its Application, 11:321-346, 2024 C.Hoffmann and N.Klein: Marginally calibrated response distributions for end-to-end learning in autonomous driving, Annals of Applied Statistics, 17(2):1740-1763, 2023 Kassem Sbeyti, M., Karg, M., Wirth, C., Klein, N., & Albayrak, S. (2024, September). Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection. In Uncertainty in Artificial Intelligence (pp. 1890-1900). PMLR. M. K. Sbeyti, N. Klein, A. Nowzad, F. Sivrikaya and S. Albayrak: Building Blocks for Robust and Effective Semi-Supervised Real-World Object Detection pdf. To appear in Transactions on Machine Learning Research, 2025 Podcasts Learning, Teaching, and Building in the Age of AI Ep 42 of Vanishing Gradient, Jan 2025. O. Beige, G. Thäter: Risikoentscheidungsprozesse, Gespräch im Modellansatz Podcast, Folge 193, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019.
    --------  
    35:02
  • Wahlmodelle
    Gudrun sprach im Januar 2024 mit zwei Studenten ihrer Vorlesung Mathematical Modelling and Simulation: Lukas Ullmer und Moritz Vogel. Sie hatten in ihrem Projekt Wahlmodelle ananlysiert. In dem Gespräch geht es darum, wie man hierfür mathematische Modelle findet, ob man Wahlsysteme fair gestalten kann und was sie aus den von ihnen gewählten Beispielen gelernt haben. Der Fokus ihrer Projektarbeit liegt auf der Betrachtung und Analyse von Wahlen, in denen mehrere verschiedene Wähler zu einem Thema abstimmen. Formal von Relevanz sind hierbei die sogenannten Wahlsysteme, welche die Art der Aggregation der Wählerstimmen beschreiben. Diese fallen in der Praxis recht vielfältig aus und über die Jahre wurden verschiedenste Wahlsysteme vorgeschlagen, angewendet und auch analysiert. In dieser Arbeit werden drei Kategorien präferenzbasierter Wahlsysteme analysiert: vergleichsbasierte Systeme, Scoring-Systeme sowie Approval-Systeme. Aufbauend darauf erfolgt die Konstruktion mehrstufiger und hybrider Wahlsysteme. Desweiteren werden verschiedenen Wahleigenschaften wie z.B. die Nicht-Diktatur oder die Strategiesicherheit betrachtet. Diese meist wünschenswerten Eigenschaften schließen sich teilweise gegenseitig aus. Die Themen Wahlmanipulation und Wahlkontrolle liegen deshalb besonders im Fokus. Literatur und weiterführende Informationen J. Rothe u.a. Einführung in Computational Social Choice: Individuelle Strategien und kollektive Entscheidungen beim Spielen, Wählen und Teilen. Spektrum Akademischer Verlag Heidelberg, 2012. doi: 10.1007/978-3-8274-2571-3. A.D. Taylor and A.M. Pacelli: Mathematics and Politics - Strategy, Voting, Power, and Proof. Springer-Verlag, Berlin Heidelberg, 2nd corrected ed. 2008, corr. 3rd printing, 2009. H.-J. Bungartz e.a.: Modellbildung und Simulation - Eine anwendungsorientierte Einführung Kapitel 4: Gruppenentscheidungen, Springer, 2009. G.G. Szpiro: Die verflixte Mathematik der Demokratie, Springer, 2011. W.D. Wallis. The Mathematics of Elections and Voting. Springer, Berlin, Heidelberg, 2014. K. Loewenstein: Verfassungsrecht und Verfassungspraxis der Vereinigten Staaten, Springer-Verlag, Berlin Heidelberg New York, 1959. Podcasts P. Stursberg, G. Thäter: Social Choice, Gespräch im Modellansatz Podcast, Folge 129, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. M. Lübbecke, S. Ritterbusch: Operations Research, Gespräch im Modellansatz Podcast, Folge 110, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. P. Staudt, G. Thäter: Wahlsysteme, Gespräch im Modellansatz Podcast, Folge 27, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. M. Fehndrich, T. Pritlove: Wahlrecht und Wahlsysteme, Gespräch im CRE Podcast, Folge 128, Metaebene Personal Media, 2009. S. Gassama, L. Harms, D. Schneiderhan, G. Thaeter: Gruppenentscheidungen, Gespräch im Modellansatz Podcast, Folge 229, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020.
    --------  
    16:12
  • Podcast Lehre
    In dieser Folge geht es darum, wie Sebastian und Gudrun Mathematik an Hochschulen unterrichten und welche Rollen das Medium Podcast und konkret unser Podcast Modellansatz dabei spielen. Die Fragen stellte unsere Hörerin Franziska Blendin, die in der Folge 233 im Jahr 2020 über Ihr Fernstudium Bachelor Maschinenbau berichtet hatte. Sie hatte uns vorab gefragt: "Was versprecht ihr euch von dem Podcast - was ist euer Fazit nach den Jahren den ihr ihn schon macht und wie gestaltet ihr warum Lehre? Was macht euch Spaß, was sind Herausforderungen, was frustriert euch? Warum und wie gestaltet ihr Lehre für Studierende außerhalb der Mathematik, also beispielsweise Maschinenbau?" Es ist ein bisschen lustig, dass die erste Folge Modellansatz, in der Sebastian und Gudrun sich spontan ein Thema zum reden suchten ausgerechnet ein Gespräch über eine neu konzipierte Vorlesung war und der Podcast diese Vorlesung bis heute in unterschiedlichen Rollen begleitet, obwohl das nicht zum ursprünglichen Plan gehörte, wie wir uns einen Podcast über Mathematik vorgestellt hatten. Einerseits haben viele kein Verständnis dafür, was alles mit Mathe gemacht werden kann, andererseits erleben wir intern andauernd so viele spannenden Vorträge und Personen. Eigentlich bringen wir die beiden Sachen in unserem Podcast nur zusammen. Das Medium Podcast ist dabei durch das Gespräch sehr niederschwellig: Es ist so sehr leicht mit den Gesprächen in die Themen einzusteigen und auch auf viel weiteren Ebenen sich darüber zu unterhalten. Wir sind überzeugt, dass wir mit Text oder Video nie so viele und so umfangreiche Austauschsformen einfangen können, mal ganz abgesehen davon, dass die Formate dann an sich für uns zu einer viel größeren Herausforderung in Form und Darstellung geworden wären. Wir hoffen, dass sich irgendwann auch mal eine Person dazu bekennt, wegen unseres Podcasts ein Mathe- oder Informatikstudium zu erwägen, aber bisher ist das tolle Feedback an sich ja schon eine ganz ausgezeichnete Bestätigung, dass diese Gespräche und Themen nicht nur uns interessieren. Viele der Gespräche haben sich auch schon vielfach für uns gelohnt: Sebastian hat aus vielen Gesprächen Inspirationen für Vorlesungen oder andere Umsetzungen gewonnen. Ein Fazit ist auf jeden Fall, dass das Ganze noch lange nicht auserzählt ist, aber wir auch nicht außerhalb unserer Umgebung leben. In der Pandemie sind einerseits Gespräche am Tisch gegenüber, wie wir sie gerne führen, schwierig geworden, und gleichzeitig ist die Lehre so viel aufwendiger geworden, dass kaum Zeit verblieb. Aufnahmen, waren zuletzt hauptsächlich "interne" Podcasts für Vorlesungen, damit die Studierenden daheim und unterwegs sich mit den Inhalten auseinandersetzen können. Gudrun hat damit auch Themen vorbereitet, die sie anschließend in die Zeitschrift Mitteilungen der Deutschen Mathematiker-Vereinigung als Artikel geschrieben hat. Das betrifft insbesondere die Folgen zu Allyship und zum Mentoring in der Mathematik. In der Vermittlung von Mathematik im Studium gibt es kaum Themen, die nicht irgendwo spannend und interessant sind. Um die Themen zu verstehen oder wie dort die Lösungen oder Verfahren gefunden wurden, muss die Theorie behandelt und in weiten Teilen verstanden werden. Da aber "Rosinenpickerei" nichts bringt (also nur die nötigsten Teile von Theorie zu erzählen), geht es darum, ein sinnvolles Mittelmaß zu finden. Also auf der einen Seite ein gutes Fundament aufzubauen zu einem Thema, aber gleichzeitig noch Zeit für Einblicke in spannende und interessante Teile zu haben. Es ist in der Vorbereitung auf der einen Seite total schön, wenn dann eine Anwendung perfekt in die Theorie passt, beispielsweise entwirft Sebastian gerade ein Skript zu formalen Sprachen und Grammatiken, und dann kann man das Komprimierverfahren LZW als eine dynamische Grammatik sehen. Oder es geht um theoretische und "langweilige" Zustandsmaschinen und dann gibt es das Beispiel, dass die Raspberry Pi Foundation gerade dazu einen eigenen Chip (RP2040) mit solchen Komponenten veröffentlicht, oder mit dem Newton-Verfahren wurde die schnelle Quadratwurzel für das Computerspiel Quake erst möglich. Ob das dann auch so toll in der Vorlesung herüberkommt, ist nochmal ein eigenes Thema, aber wenn es klappt, so ist das natürlich großartig. Umgekehrt frustriert es dann schon, wenn die Grundlagen nicht bei möglichst vielen ankommen- nicht jede Person muss sich ja bis ins letzte für ein Thema begeistern, aber am Ende sollte der Großteil die wichtigen Hauptsachen mitnehmen. Leider gibt es immer ein paar Leute, wo das dann trotz vieler Angebote leider nicht so gut klappt, und das frustriert natürlich. Dann muss geschaut werden, woran es liegen könnte. Aktuell hilft das Nörgeln und Nerven, wenn nicht regelmäßig die angebotenen Übungsaufgaben abgegeben werden, wohl mit am Besten. Warum werden mathematische Themen im Ingenieurstudium relevant: Das hängt ganz davon ab, welche Kurse wir haben, und was gebraucht wird... Sebastian unterrichtet jetzt gerade Informatik-Studierende und in den Wirtschaftswissenschaften, früher außer MACH/CIW/BIW/MAGE... auch mal Mathe-Lehrende. Das "Wie" ist dann jeweils auf die Gruppe zugeschnitten: Zunächst gibt es ja unterschiedliche Voraussetzungen: Curriculum, Haupt- & Nebenfächer, etc.. Dann gibt es eine Liste von Fertigkeiten, die vermittelt werden sollen und können, und dann besonders in den Vorlesungen außerhalb des Mathematik-Studiums die lästige Beschränkung des Umfangs der Veranstaltung, und wieviel Eigenarbeit erwartet werden kann. Grundsätzlich möchten wir auch bei den Nicht-Hauptfächlern so viel davon erzählen, was dahinter steht- statt "ist halt so"- und was heute damit gemacht werden kann. Diese Motivation macht vielen das Lernen leichter. Es muss aber auch immer viel selbst gemacht werden, dh. viele Aufgaben und prototypische Problemlösungen, denn Mathe lernt sich nicht durchs zuhören alleine. (leider... ;) Damit geht das Puzzle-Spiel los: Welche Grundlagen müssen aufgebaut werden, und was kann wie in der gegebenen Zeit sinnvoll behandelt werden... Und natürlich immer mit dem Blick darauf, ob es Anküpfungspunkte in die Studienrichtungen der Studierenden gibt. Literatur und weiterführende Informationen F. Blendin: Fußballfibel FSV Frankfurt MINT-Kolleg Baden-Württemberg fyyd - Die Podcast-Suchmaschine F. Blendin, S. Düerkop: Die Suche nach der ersten Frau, Zeit, 2.9.2020. GanzOhr-Konferenzen auf Wissenschaftspodcasts.de. RP2040 Dokumentation, Prozessor mit 8 Zustandsmaschinen. Schülerlabor Mathelabor der Fakultät für Mathematik am KIT und das Onlinelabor Einsetzungsverfahren gegenüber dem Gauß-Jordan-Verfahren Vom traditionellen Riemann-Integral zum modernen Lebesgue-Integral mit Nullmengen, das natürlich kompatibel ist zur Maßtheorie, Fourier-Transformation und zu den Sobolev-Räumen für Finite-Elemente Farbwahrnehmung durch Sinneszellen - Sinneszellen für langwelliges Licht werden auch durch kurzwelliges Licht angesprochen und das schließt die Illusion des Farbkreises Podcasts von Franziska Legende verloren Der Podcast über die vergessenen Geschichten des deutschen und internationalen Frauenfußballs, Produziert von Sascha, Sven, Petra, Freddy, Helga, Sunny, Franzi G4 Podcast über CNC-Maschinen (Thema Zerspanung, zuletzt mit Sonderfolgen zum Lernen im Studium) Braucast - Ein Hobbybrau-Podcast. Podcasts zum Thema Mathe in der Hochschullehre A. Chauhan, G. Thäter: CSE, Gespräch im Modellansatz Podcast, Folge 249, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2022. F. Blendlin, G. Thäter: Fernstudium Maschinenbau, Gespräch im Modellansatz Podcast, Folge 233, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020. Y. Cai, S. Dhanrajani, G. Thäter: Mechanical Engineering, Gespräch im Modellansatz Podcast, Folge 176, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. ]http://modellansatz.de/maschinenbau-hm|G. Thäter, G. Thäter: Maschinenbau HM], Gespräch im Modellansatz Podcast, Folge 169, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. G. Thäter, J. Rollin: Advanced Mathematics, Conversation in the Modellansatz Podcast, Episode 146, Department of Mathematics, Karlsruhe Institute for Technology (KIT), 2017. A. Kirsch: Lehramtsausbildung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 104, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. F. Hettlich, G. Thäter: Höhere Mathematik, Gespräch im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. M.-L. Maier, S. Ritterbusch: Rotierender 3d-Druck, Gespräch im Modellansatz Podcast, Folge 9, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2013. C. Spannagel, S. Ritterbusch: Flipped Classroom, Gespräch im Modellansatz Podcast, Folge 51, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. M. Lübbecke, S. Ritterbusch: Operations Research, Gespräch im Modellansatz Podcast, Folge 110, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. Podcasts als Projektabschluss S. Bischof, T. Bohlig, J. Albrecht, G. Thäter: Benchmark OpenLB, Gespräch im Modellansatz Podcast, Folge 243, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021. Y. Brenner, B. Hasenclever, U. Malottke, G. Thäter: Oszillationen, Gespräch im Modellansatz Podcast, Folge 239, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021. S. Gassama, L. Harms, D. Schneiderhan, G. Thäter: Gruppenentscheidungen, Gespräch im Modellansatz Podcast, Folge 229, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020. L. Dietz, J. Jeppener, G. Thäter: Gastransport - Gespräch im Modellansatz Podcast, Folge 214, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019. A. Akboyraz, A. Castillo, G. Thäter: Poiseuillestrom - Gespräch im Modellansatz Podcast, Folge 215, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019.A. Bayer, T. Braun, G. Thäter: Binärströmung, Gespräch im Modellansatz Podcast, Folge 218, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. C. Brett, N. Wilhelm, G. Thäter: Fluglotsen, Gespräch im Modellansatz Podcast, Folge 196, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. Weitere erwähnte Podcasts, Artikel und Vorträge J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. R. Pollandt, S. Ajuvo, S. Ritterbusch: Rechenschieber, Gespräch im Modellansatz Podcast, Folge 184, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. S. Ritterbusch: 0x5f3759df - ein WTF für mehr FPS, Vortrag auf der GPN20, 2022. M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. M. Heidelberger: Bilderkennung zeigt Wege als Klang, Presseinformation 029/2018, Karlsruher Institut für Technologie (KIT), 2018. N. Ranosch, G. Thäter: Klavierstimmung. Gespräch im Modellansatz Podcast, Folge 67, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015.
    --------  
    1:42:14
  • Instandhaltung
    Gudrun unterhält sich in dieser Folge mit Waltraud Kahle. Sie war bis 2018 als außerplanmäßige Professorin in der Fakultät für Mathematik an der Otto von Guericke Universität in Magdeburg beschäftigt und war Mitglied des Instituts für Mathematische Stochastik. Das Thema des Gespräches ist das Forschungsthema von Waltraud: Statistik für zensierte Daten und in Abnutzungsprozessen sowie unvollständige Reparatur. Das Gespräch beginnt mit der Frage: Wie kann man Aussagen darüber treffen, wie lange technische Objekte oder auch Menschen "leben" . Ungefähre Aussagen hierzu für große Gruppen sind in der Industrie, der Demographie und Versicherungsmathematik und Medizin nötig. Es ist ein statistisches Problem, das sich in der Theorie auf eine (möglichst große) Anzahl von Beobachtungen bezieht aus denen dann Schlussfolgerungen abgeleitet werden, die für ähnliche Prozesse auch zu Vorhersagen dienen können. In der Praxis liegen aber in der Regel nur zensierte Daten vor, denn die Beobachtung muss abgebrochen werden, bevor die vollständige Information vorliegt. Ein alternativer Zugang ist es nun, nicht nach der Lebensdauer zu fragen sondern die der Lebensdauer zugrunde liegenden Abnutzungsprozesse zu modellieren (z.B. Verschleiß und Ermüdung). Hier verwendet man stochastische Prozesse, wie zum Beispiel den Wienerprozess. Grundlegende Eigenschaft des Wienerprozesses ist es, dass in jedem Zeitintervall ein normalverteilter Zuwachs erfolgt und alle diese Zuwächse voneinander unabhängig sind. Ein Ausfall erfolgt, wenn der Abnutzungsprozess ein vorgegebenes Niveau erstmalig erreicht. Man fragt sich folglich: Wie ist die Verteilung dieser "Erstüberschreitungszeit". Zur Vermeidung von Ausfällen können regelmäßig vorbeugende Instandhaltungsmaßnahmen durchgeführt werden, die das Abnutzungsniveau verringern. Das kann mit festen Intervallen oder nach vorgegebenen Ereignissen stattfinden. Zu DDR-Zeiten gab es z.B. ein Projekt, dass sicherstellen konnte, das notwendige Wartungsarbeiten von Mähdreschern nur im Winter erfolgten, damit sie zur Erntesaison voll einsatzfähig waren. Das statistische Modell muss Aussagen zu folgenden Fragen treffen können Einfluß der Instandhaltung auf die Lebensdauerverteilung, Definition von Kostenfunktionen der vorbeugenden Instandhaltung in Abhängigkeit vom Reparaturgrad, Kostenoptimale Instandhaltung. Andere Modellierungsmöglichkeiten bieten Gammaprozesse oder inhomogene Poissonprozesse. Im Gespräch gehen Gudrun und Waltraud auf Eigenschaften der Normalverteilung ein. Sie besprechen die Exponentialverteilung (diese hat eine konstante Ausfallrate). Das beschreibt elektronische Bauteile mit langer Lebensdauer sehr gut. Außerdem geht es um die Weibull-Verteilung. Diese passt auf Systeme mit sehr vielen Teilen (das Modell nimmt hier sogar unendlich viele Teile), die mit geringer Wahrscheinlichkeit ausfallen und wo das System ausfällt, sobald das erste Glied ausgefallen ist. Diese Verteilung hat die praktische Eigenschaft, dass die in der Medizin verwendeten Modelle der proportionalen Ausfallrate und der proportionalen Lebensdauer übereinstimmen. Waltraud engaiert sich im eLeMeNTe e.V.. Das ist der Landesverein Sachsen-Anhalt zur Förderung mathematisch, naturwissenschaftlich und technisch interessierter und talentierter Schülerinnen, Schüler und Studierender. Ein Ziel ist es, die Landesolympiaden Mathematik in Sachsen-Anhalt durchzuführen und Schülerinnen und Schüler mit speziellen Arbeitsgemeinschaften auf die Wettbewerbe vorzubereiten. Waltraud findet es spannend, dort oft überraschenden Ideen der Kinder und jungen Leute zu begegnen, die noch nicht in den ausgetretenen Denkpfaden unterwegs sind. Zur Geschichte der Mathe-Olympiaden finden sich auf Wikipedia folgende Informationen (die Gudrun aus eigenem Erleben bestätigen kann): "Die erste Mathematik-Olympiade in der DDR fand 1961/62 als „Olympiade Junger Mathematiker“ statt. Seitdem gab es dort ab der 5. Klassenstufe Schul- und Kreisolympiaden, ab der 7. Klassenstufe Bezirksolympiaden und ab der 10. Klassenstufe DDR-Olympiaden, an der aber auch sogenannte Frühstarter aus tieferen Klassenstufen teilnahmen. Der DDR-Ausscheid fand zunächst in der Woche vor Ostern jeden Jahres in der Jugendhochschule „Wilhelm Pieck“ bei Berlin, später im Mai in Erfurt statt. ... Auf allen Ebenen gab es zur Unterstützung begabter Schüler Mathematikzirkel....Nach der Wiedervereinigung Deutschlands entwickelte sich die Mathematikolympiade schnell zu einem bundesweiten Schülerwettbewerb. Seit 1994 ist der Mathematik-Olympiaden e.V. Träger des Wettbewerbs, der in Kooperation mit dem Talentförderzentrum Bildung & Begabung jährlich ausgeschrieben wird. Seit 1996 nehmen alle 16 Bundesländer an der Bundesrunde teil." Die Bundesrunde fand 1993, 1994 und 2001 in Magdeburg stattt. Referenzen und weitere Informationen Kahle, Waltraud; Mercier, Sophie; Paroissin, Christian: Mathematical models and methods in reliability set. volume 3: Degradation processes in reliability. In: Hoboken, NJ: Wiley, 2016 (Mathematics and statistics series) Kahle, Waltraud; Liebscher, Eckhard: Zuverlässigkeitsanalyse und Qualitätssicherung, Oldenbourg Wissenschaftsverlag, 2013 Elemente e.V. Landesolympiade Mathematik in Sachsen-Anhalt Matheolympiade in Deutschland
    --------  
    49:57
  • CSE
    Gudrun spricht in dieser Folge mit Anshuman Chauhan über sein Masterstudium Computational Sciences in Engineering (CSE) an der TU Braunschweig. CSE ist dort ein viersemestriger Masterstudiengang, der etwa zur Hälfte in Englisch und zur anderen Hälfte in Deutsch unterrichtet wird. Er ist an der Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften angesiedelt, kombiniert aber in der Ausbildung Ingenieurwissenschaften, Mathematik und angewandte Informatik. In gewisser Weise ist es eine konsequente Weiterentwicklung der Idee der Technischen Universitäten deutscher Prägung, dass heute solche interdisziplinären Studiengänge angeboten werden. So wie das heutige KIT wurden sie ja häufig als Polytechnische Schulen gegründet, in denen zunächst das was wir heute Maschinenbau nennen mathematisiert wurde, um mit der Entwicklung der Technik Schritt halten zu können. In zunehmenden Maße waren dann immer mehr technische Fächer ohne eigene Forschung und auch ohne eine Grundausbildung in Mathematik nicht mehr denkbar. Heute hält nun endgülitg zunächst die Computersimulation aber zunehmend auch die Benutzung von Algorithmischem Lernen und Big Data Einzug in die Ingenieurwissenschaften. Diese Entwicklung wird mit Spezialisierungen in der Mathematik, insbesondere in den Studiengängen Technomathematik, in Spezialisierungen in den Ingenieurwissenschaften, aber auch durch die Schaffung von neuartigen Studiengängen begleitet, die im Namen wie in der Ausbildung mindestens zwei, oft aber drei Standbeine haben: Mathematik, Informatik und eine technische Anwendung. Anshuman ist in Neu-Dehli aufgewachsen. Nach seiner Bachelorarbeit zu Finite Element Methoden hatte er sich weltweit nach Studiengängen umgeschaut, die mit Computersimulation zu tun haben - am liebsten mit Aerodynamik für Autos. Deutschland war für ihn dabei attraktiv, weil es renommierte Technische Universitäten hat und die Kosten nicht exorbitant sind. Er entschied sich für die TU in Braunschweig aufgrund eben dieses Renomees der deutschen TU9. Sie hat zur Zeit etwa 20.000 Studierende in fast 80 Studiengänge. Seit 2018 gibt es einen Exzellenzcluster in Luftfahrt und Metrologie und der DLR ist in der Nähe. Im Gespräch erläutert Anshuman, dass er mit der Entscheidung für Braunschweig und für diesen Studiengang sehr zufrieden ist. Er ist nun nach erfolgreichem Abschluss und einiger Zeit in der Wirtschaft seit 2020 am KIT im Graduiertenkolleg SiMet, wo der Kontakt mit dem Podcast zustande kam. Braunschweig hat ein richtiges Stadtleben, das von den vielen Studierenden dort mit geprägt ist. Anshuman ist dort in einem Studentenwohnheim untergekommen und hatte sofort sozial Anschluss. In dem von ihm in Braunschweig belegten Masterprogramm CSE ist jedes Semester aufgeteilt zwischen Ingenieurfächern, Mathematik und Informatik. Zum Beispiel die Fächer Strömungsdynamik und Thermodynamik zusammen mit partiellen Differentialgleichungen in der Mathematik und Visualisierung im Informatikteil. Später sind dann Vertiefungskurse in z.B. Maschinenbau, Elektrotechnik, Bauingenieurwesen oder Informatik wählbar. Die Numerischen Methoden in der Aerodynamik z.B. waren sehr praxisnah. Er wollte seine Masterarbeit unbedingt in der Industrie schreiben, um Erfahrung in einem Unternehmen zu sammeln. Er sah aber sehr schnell, dass richtig Deutsch zu lernen dafür eine notwendige Voraussetzung ist. Deshalb nahm er sich ein Semester Zeit, um die Sprache noch besser zu üben und außerdem einige für ihn sehr interessante Kurse zu belegen, zu denen er vorher keine Zeit gehabt hatte. Überdies hat er auch noch spanisch belegt. Mit der deutschen Bewerbung hat es schließlich mit einer Masterarbeit in Stuttgart geklappt. Der Wechsel von Braunschweig in Norddeutschland nach Stuttgart in Süddeutschland war für ihn sehr spürbar - es ist einfach ein anderer Schlag Menschen. In der Firma gibt es natürlich vorgeschriebene Prozesse, in die man sich erst einarbeiten muss. Sie bringen aber eine gewisse Robustheit in die Entwicklung. Als Masterstudent hatte er trotzdem genug Freiheit und eine tolle Betreuung. In der Industrietätigkeit nach seinem Masterabschluss musste er sich oft schnell in die Probleme einarbeiten und konnte nicht so gründlich, sein wie er es aus der Studienzeit gewohnt war. Er beschäftigte sich mit der Optimierung am Einlasskanal in einem Motor mit Hilfe von Strömungsrechnung (CFD). D.h. er hatte sein ursprüngliches Traumziel eigentlich erreicht. Trotzdem war es ihm dann zu viel Routine und er wollte noch mehr über ein Zukunftsthema für Autos lernen: konkret über Batterien. Das kann er nun während der Promotion im Rahmen von SiMET tun. Hier ist er wieder in einem Umfeld von anderen jungen Menschen, die sehr unterschiedliche Masterabschlüsse erworben haben und Mathematik, Computer und die Anwendungsthemen alle verstehen müssen. Podcasts F. Blendlin, G. Thaeter: Fernstudium Maschinenbau, Gespräch im Modellansatz Podcast, Folge 233, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020. S. Carelli, G. Thäter: Batteries, Gespräch im Modellansatz Podcast, Folge 211, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019.Y. Cai, S. Dhanrajani, G. Thäter: Mechanical Engineering, Gespräch im Modellansatz Podcast, Folge 176, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018.
    --------  
    41:31

Weitere Wissenschaft Podcasts

Über Modellansatz

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir hier aus erster Hand.
Podcast-Website

Hören Sie Modellansatz, Ö1 Wissen aktuell und viele andere Podcasts aus aller Welt mit der radio.at-App

Hol dir die kostenlose radio.at App

  • Sender und Podcasts favorisieren
  • Streamen via Wifi oder Bluetooth
  • Unterstützt Carplay & Android Auto
  • viele weitere App Funktionen
Rechtliches
Social
v7.17.1 | © 2007-2025 radio.de GmbH
Generated: 5/10/2025 - 2:52:15 AM